بررسی دقت شبکه های عصبی مصنوعی و الگوریتم بهینه سازی کلونی مورچگان در پیش بینی مدیریت سود
نویسندگان
چکیده مقاله:
شناخت کیفیت سود برای استفادهکنندگان از اطلاعات حسابداری به دلیل ارزیابی عملکرد، پیشبینی سودآوری و تعیین ارزش واقعی شرکتها بسیار حائز اهمیت است. هدف از این پژوهش بررسی دقت پیشبینی مدیریت سود با استفاده از شبکههای عصبی (ANN) و الگوریتم کلونی مورچگان (ACO) و مقایسه آن با مدل خطی (LR) است. برای این منظور از 28 متغیر تاثیرگذار بر مدیریت سود در قالب چهار گروه (مالی، مدیریتی، شرکتی و حسابرسی) در طی سالهای 1390 الی 1395 در 124 شرکت پذیرفته شده بورس اوراق بهادار تهران استفاده گردید. نتایج کلی حاصل از این پژوهش نشان داد که روش شبکهی عصبی مصنوعی و الگوریتم کلونی مورچگان در پیشبینی مدیریت سود نسبت به روش خطی دقیقتر و دارای سطح خطای کمتری است. همچنین دقت ترکیب الگوریتم کلونی مورچگان با شبکهی عصبی (A-ANN) حاکی از برتری این الگو در قیاس با الگوی شبکه عصبی مصنوعی است. نتایج ترکیب شبکهی عصبی مصنوعی الگوریتم کلونی مورچگان با ضریب همبستگی (878/0) نشان داد این الگو با شش متغیر دقت پیشبینی، سهم مالکیت سهامداران عمده، سودآوری، نوسانات سود، سن شرکت و اندازه شرکت توانایی پیشبینی مدیریت سود را با دقت 97 درصد دارد.
منابع مشابه
بکارگیری الگو ترکیبی شبکه های عصبی مصنوعی با الگوریتم های فراکاوشی (ICA,PSO) در پیش بینی مدیریت سود
رویکردهای فراکاوشی عمدتاً بر اساس نظم و قواعد موجود در ارگانیسمهای طبیعی الهام گرفتهاند. این رویکردها امروزه کاربرد بسیاری در شاخههای مختلف پیدا کرده است. با توجه به اهمیت پیشبینی، شناخت روشها در پیشبینی مدیریت سود میتواند اطلاعات مفیدی را برای ذینفعان فراهم آورد. تنوع عوامل بدست آمده ناشی از نتایج الگوهای خطی برای سنجش مدیریت سود موجب شده است سرمایهگذارن نسبت به کیفیت سود گزارش شده ترد...
متن کاملپیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...
اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...
متن کاملمقایسه دقت پیش بینی مدیریت سود با استفاده از الگوریتم های مورچگان و غذایابی باکتری
هدف این تحقیق بررسی این موضوع است که آیا می توان مدیریت سود را براساس مدل های مبتنی بر یادگیری ماشین کشف کرد. در این تحقیق برای پیش بینی مدیریت سود از مدل های مبتنی بر یادگیری ماشین (الگوریتم کلونی مورچه ها و غذایابی باکتری) استفاده شده است. برای این منظور 143 شرکت پذیرفته شده در بورس اوراق بهادار تهران طی دوره زمانی 1388 تا 1392 مورد مطالعه قرار گرفتند. در این تحقیق با استفاده از الگوریتم حرکا...
متن کاملپیش بینی سود هر سهم: ترکیب شبکه های عصبی مصنوعی و الگوریتم بهینه سازی حرکت تجمعی ذرات
انتظارات مربوط به سود اثرات قابل ملاحظه ای بر تصمیمات مدیران و سرمایهگذاران دارد. یکی از معیار هایی که امروزه به عنوانشاخص سود آوری شرکتها مورد توجه قرار می گیرد، مفهوم سود هر سهم است.سود هر سهم آثار عمده ای بر قیمت سهام شرکت ها نیز دارد. از اینرو پیش بینی سود هر سهمهم برای سرمایه گذاران و هم برای مدیران از اهمیت بسزایی برخوردار است. هدف از انجام این پژوهش، مدلبندی پیشبینی سود هر سهم شرکت...
متن کاملمقایسه دقت پیش بینی مدیریت سود با استفاده از الگوریتمهای مورچگان و غذایابی باکتری
هدف این تحقیق بررسی این موضوع است که آیا میتوان مدیریت سود را براساس مدلهای مبتنی بر یادگیری ماشین کشف کرد. در این تحقیق برای پیشبینی مدیریت سود از مدلهای مبتنی بر یادگیری ماشین (الگوریتم کلونی مورچهها و غذایابی باکتری) استفاده شده است. برای این منظور 143 شرکت پذیرفته شده در بورس اوراق بهادار تهران طی دوره زمانی 1388 تا 1392 مورد مطالعه قرار گرفتند. در این تحقیق با استفاده از الگوریتم حرکا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 39
صفحات 82- 110
تاریخ انتشار 2019-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023